Learning effective color features for content based image retrieval in dermatology

نویسندگان

  • Kerstin Bunte
  • Michael Biehl
  • Marcel F. Jonkman
  • Nicolai Petkov
چکیده

We investigate the extraction of effective color features for a content-based image retrieval (CBIR) application in dermatology. Effectiveness is measured by the rate of correct retrieval of images from four color classes of skin lesions. We employ and compare two different methods to learn favorable feature representations for this special application: limited rankmatrix learning vector quantization (LiRaMLVQ) and a Large Margin Nearest Neighbor (LMNN) approach. Both methods use labeled training data and provide a discriminant linear transformation of the original features, potentially to a lower dimensional space. The extracted color features are used to retrieve images from a database by a k-nearest neighbor search. We perform a comparison of retrieval rates achieved with extracted and original features for eight different standard color spaces. We achieved significant improvements in every examined color space. The increase of the mean correct retrieval rate lies between 10% and 27% in the range of k1⁄41–25 retrieved images, and the correct retrieval rate lies between 84% and 64%. We present explicit combinations of RGB and CIE-Lab color features corresponding to healthy and lesion skin. LiRaM LVQ and the computationally more expensive LMNN give comparable results for large values of the method parameter k of LMNN (kZ25) while LiRaM LVQ outperforms LMNN for smaller values of k. We conclude that feature extraction by LiRaM LVQ leads to considerable improvement in color-based retrieval of dermatologic images. & 2010 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image retrieval using the combination of text-based and content-based algorithms

Image retrieval is an important research field which has received great attention in the last decades. In this paper, we present an approach for the image retrieval based on the combination of text-based and content-based features. For text-based features, keywords and for content-based features, color and texture features have been used. Query in this system contains some keywords and an input...

متن کامل

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

Effective Color Features for Content Based Image Retrieval in Dermatology

We are concerned with the extraction of effective color features for a content-based image retrieval (CBIR) application in dermatology. Effectiveness is measured by he rate of correct retrieval of images from four color classes of skin lesions. We employ and compare two different methods: Limited Rank Matrix Learning Vector Quantization (LiRaM LVQ) and a Large Margin Nearest Neighbor (LMNN) app...

متن کامل

A Modified Grasshopper Optimization Algorithm Combined with CNN for Content Based Image Retrieval

Nowadays, with huge progress in digital imaging, new image processing methods are needed to manage digital images stored on disks. Image retrieval has been one of the most challengeable fields in digital image processing which means searching in a big database in order to represent similar images to the query image. Although many efficient researches have been performed for this topic so far, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2011